精英家教网 > 高中数学 > 题目详情
(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.
(1)求着3点与原点O恰好是正三棱锥的四个顶点的概率;
(2)求着3点与原点O共面的概率.
分析:根据题意,分情况讨论,列举可得从6点中随机取出3个点的情况数目,
(1)由正三棱锥的定义,在列举的结果中分析可得选取的3点与原点O恰好是正三棱锥的四个顶点的情况数目,由等可能事件的概率公式,计算可得答案;
(2)根据题意,在列举的结果中分析可得选取的3点与原点O共面的情况数目,由等可能事件的概率公式,计算可得答案.
解答:解:从这6点中随机取出3个点,其所有的情况有
x轴上取2个点的有A1A2B1,A1A2B2,A1A2C1,A1A2C2,共4种情况,
y轴上取2个点的有B1B2A1,B1B2A2,B1B2C1,B1B2C2,共4种情况,
Z轴上取2个点的有C1C2A1,C1C2A2,C1C2B1,C1C2B2,共4种情况,
3个点在不同的坐标轴上有A1B1C1,A1B1C2,A1B2C1,A1B2C2,A2B1C1,A2B1C2,A2B2C1,A2B2C2,共8种情况,
则从这6点中随机取出3个点,其所有的情况共有4+4+4+12=20种,
(1)选取的3点与原点O恰好是正三棱锥的四个顶点的情况有A1B1C1,A2B2C2,共2种,
则其概率P1=
2
20
=
1
10

(2)选取的3点与原点O共面的情况,有A1A2B1,A1A2B2,A1A2C1,A1A2C2,B1B2A1,B1B2B2,B1B2C1,B1B2C2,C1C2A1,C1C2A2,C1C2B1,C1C2B2,共12种,
则选取的3点与原点O共面的概率P2=
12
20
=
3
5
点评:本题考查等可能事件的概率计算,关键是结合空间几何的知识,列举得到(1)(2)小题中事件的情况数目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西)如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4
2
,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.
(1)求证:平面DEG⊥平面CFG;
(2)求多面体CDEFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).
(1)求V=0的概率;
(2)求V的分布列及数学期望EV.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为
π
6
,以A为圆心,AB为半径作圆弧
BDC
与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧
BDC
行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是(  )

查看答案和解析>>

同步练习册答案