精英家教网 > 高中数学 > 题目详情
(2012•江西)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4
2
,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.
(1)求证:平面DEG⊥平面CFG;
(2)求多面体CDEFG的体积.
分析:(1)判断四边形CDEF为矩形,然后证明EG⊥GF,推出CF⊥EG,然后证明平面DEG⊥平面CFG.
(2)在平面EGF中,过点G作GH⊥EF于H,求出GH,说明GH⊥平面CDEF,利用VCDEFG=
1
3
SCDEF•GH
求出体积.
解答:解:(1)证明:因为DE⊥EF,CF⊥EF,所以四边形CDEF为矩形,
由CD=5,DE=4,得GE=
GD2-DE2
=3,
由GC=4
2
,CF=4,得FG=
GC2-CF2
=4,所以EF=5,
在△EFG中,有EF2=GE2+FG2,所以EG⊥GF,
又因为CF⊥EF,CF⊥FG,得CF⊥平面EFG,
所以CF⊥EG,所以EG⊥平面CFG,即平面DEG⊥平面CFG.
(2)解:在平面EGF中,过点G作GH⊥EF于H,则GH=
EG•GF
EF
=
12
5

因为平面CDEF⊥平面EFG,得GH⊥平面CDEF,
VCDEFG=
1
3
SCDEF•GH=
1
3
×4×5×
12
5
=16.
点评:本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查逻辑推理能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西)如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).
(1)求V=0的概率;
(2)求V的分布列及数学期望EV.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为
π
6
,以A为圆心,AB为半径作圆弧
BDC
与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧
BDC
行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.
(1)求着3点与原点O恰好是正三棱锥的四个顶点的概率;
(2)求着3点与原点O共面的概率.

查看答案和解析>>

同步练习册答案