精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=x3-3ax2-bx,其中a,b为实数.f(x)在区间[-1,2]上为减函数,且b=9a,则a的取值范围.[1,+∞).

分析 求出f(x)的导数,问题转化为3x2-6ax-9a≤0在[-1,2]恒成立,得到关于a的不等式组,解出即可.

解答 解:由b=9a,得f(x)=)=x3-3ax2-9ax,
f′(x)=3x2-6ax-9a,
若f(x)在区间[-1,2]上为减函数,
则3x2-6ax-9a≤0在[-1,2]恒成立,
∴$\left\{\begin{array}{l}{3+6a-9a≤0}\\{12-12a-9a≤0}\end{array}\right.$,解得:a≥1,
故答案为:[1,+∞).

点评 本题考查了函数的单调性、导数的应用以及二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知a,b,c分别为△ABC内角A,B,C的对边,sinA=acosC,c=$\sqrt{3}$.
(1)求角C;
(2)求asinA+bsinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知过双曲线Г:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2作圆x2+y2=a2的切线,交双曲线Г的左支交于点A,且AF1⊥AF2,则双曲线的渐近线方程是(  )
A.y=±2xB.y=±$\frac{1}{2}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x≥$\frac{5}{2}$,求f(x)=$\frac{{x}^{2}-4x+5}{2x-4}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x2+2x+alnx在(0,1)上单调递减,则实数a的取值范围是(  )
A.a≥0B.a≤0C.a≥-4D.a≤-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCA翻折,使得点A,D重合于F,此时二面角E-BC-F的余弦值为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{7}}{4}$C.$\frac{2}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=xlnx的单调递减区间为(  )
A.(-∞,$\frac{1}{e}$)B.(0,$\frac{1}{e}$)C.(-∞,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AD,底面ABCD为正方形,E为DP的中点,AF⊥PC于F.
(Ⅰ)求证:PC⊥平面AEF;
(Ⅱ)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若对任意实数x使得不等式|x-a|-|x+2|≤3恒成立,则实数a的取值范围是(  )
A.[-1,5]B.[-2,4]C.[-1,1]D.[-5,1]

查看答案和解析>>

同步练习册答案