精英家教网 > 高中数学 > 题目详情
18.已知a,b,c分别为△ABC内角A,B,C的对边,sinA=acosC,c=$\sqrt{3}$.
(1)求角C;
(2)求asinA+bsinB的取值范围.

分析 (1)由已知及正弦定理可求$tanC=\sqrt{3}$,即可得解三角形内角C的值.
(2)根据正弦定理,三角形内角和定理,三角函数恒等变换的应用化简可得asinA+bsinB=2+sin(2A-$\frac{π}{6}$),根据范围$A∈(0,\frac{2π}{3})$,利用正弦函数的图象和性质可求$sin(2A-\frac{π}{6})∈({-\frac{1}{2},1}]$,进而得解asinA+bsinB的取值范围.

解答 (本题满分为12分)
解:(1)由已知及正弦定理可得:$\frac{a}{sinA}=\frac{1}{cosC}=\frac{c}{sinC}$,
因为:$c=\sqrt{3}$,
所以:$tanC=\sqrt{3}$,
所以:$C=\frac{π}{3}$.----------(4分)
(2)根据正弦定理可知:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2$,
所以:a=2sinA,b=2sinB,
可得:asinA+bsinB=2sin2A+2sin2B=2-cos2A-cos2B,
因为:$A+B=\frac{2}{3}π$,
所以:$asinA+bsinB=2-cos2A-cos(\frac{4}{3}π-2A)$
=$2-\frac{1}{2}cos2A+\frac{{\sqrt{3}}}{2}sin2A=2+sin(2A-\frac{π}{6})$,
因为:$A∈(0,\frac{2π}{3})$,
所以:$2A-\frac{π}{6}∈(-\frac{π}{6},\frac{7π}{6})$,
所以:$sin(2A-\frac{π}{6})∈({-\frac{1}{2},1}]$,
所以:$2+sin(2A-\frac{π}{6})∈(\frac{3}{2},3]$,
所以:$asinA+bsinB∈(\frac{3}{2},3]$.-----------(12分)

点评 本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=$\sqrt{2}$,AF=1,M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上一点P,使得PF与BC所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sin(x-$\frac{π}{3}$)cosx+sinx(cosx+$\sqrt{3}$sinx),x∈R.
(Ⅰ)若α∈(-$\frac{π}{2}$,0),且cosα=$\frac{1}{3}$,求f($\frac{α}{2}$)的值;
(Ⅱ)已知△ABC的角A,B,C的对边分别为a,b,c,若f(A)=$\sqrt{3}$,a=4,求△ABC的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overline z$=$\frac{i}{1-i}$是复数z的共轭复数,则z=(  )
A.-$\frac{1}{2}$-$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=|ex-1|,a>0>b,f(a)=f(b),则b(ea-2)的最大值为(  )
A.$\frac{1}{e}$B.1C.2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U={0,1,2,3,4,5},集合A={x∈N|x2-4x-5<0},B={1,2,4,5},则∁U[A∩(∁UB)]=(  )
A.{0,3}B.{2,4,5}C.{1,2,3,4}D.{1,2,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数f(x)=sin(2x+$\frac{π}{3}$)的图象分别向左、右平移φ(φ>0)个单位所得图象恰好重合,则φ的最小值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知边长为2的等边△ABC,其中点P,Q,G分别是边AB,BC,CA上的三点,且AP=$\frac{1}{2}$AB,BQ=$\frac{1}{3}$BC,CG=$\frac{1}{4}$CA,则$\overrightarrow{PQ}$•$\overrightarrow{PG}$=(  )
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{3}{4}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=x3-3ax2-bx,其中a,b为实数.f(x)在区间[-1,2]上为减函数,且b=9a,则a的取值范围.[1,+∞).

查看答案和解析>>

同步练习册答案