精英家教网 > 高中数学 > 题目详情

【题目】如图,在四边形ACBD中, ,且△ABC为正三角形.

(Ⅰ)求cos∠BAD的值;
(Ⅱ)若CD=4, ,求AB和AD的长.

【答案】解:(Ⅰ)因为 ,∠CAD∈(0,π)

所以

所以cos∠BAD= = = =

(Ⅱ)设AB=AC=BC=x,AD=y,在△ACD和△ABD中由余弦定理得

代入得

解得 (舍)


【解析】(Ⅰ)根据sin2+cos2=1可得出sin,又因为=,根据两角差的余弦公式cos()=coscos+sinsin展开;(Ⅱ)根据余弦定理a2=b2+c2-2bccosA列出关于AB与AD的方程,联立组成方程组即可求解.
【考点精析】关于本题考查的两角和与差的余弦公式,需要了解两角和与差的余弦公式:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 的离心率为 ,且经过点M 的直径C1的长轴.如图,C是椭圆短轴端点,动直线AB过点C且与圆C2交于A,B两点,CD垂直于AB交椭圆于点D.

(1)求椭圆C1的方程;
(2)求△ABD面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=2CB,CC1=3CB,则直线BC1与直线AB1夹角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣2,2]上的奇函数,且f(2)=3,若对任意的m,n∈[﹣2,2],m+n≠0,都有 >0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求实数a的取值范围;
(2)若不等式f(x)≤(5﹣2a)t+1对任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合A,B满足以下两个条件.
(ⅰ)A∪B={1,2,3,4,5,6},A∩B=
(ⅱ)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为( )
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集为(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在过点(1,0)的直线与曲线y=x3 都相切,则a等于(
A.﹣1或
B.﹣1或
C.
D. 或7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={y|y=log x, },B={x|y= }.
(1)若a=2,求A∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)求f(x)的周期及其图象的对称中心;
(2)△ABC中,角A、B、C所对的边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求f(B)的值.

查看答案和解析>>

同步练习册答案