精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角P-AC-B的大小为60°.过P作PH⊥EF于H.
(I)求证:PH⊥平面ABC;
(Ⅱ)若a=
2
b
,求直线DP与平面PBC所成角的大小;
(Ⅲ)若a+b=2,求四面体P-ABC体积的最大值.
精英家教网
分析:(I)证明AC⊥平面PEF,可得平面PEF⊥平面ABC,利用面面垂直的性质,可得PH⊥平面ABC;
(II)以D为原点,DA,DC所在直线分别为x,y轴,DA的长度为单位长度,建立空间直角坐标系,求出平面PBC的法向量,利用向量的夹角公式,即可求直线DP与平面PBC所成角的大小;
(Ⅲ)表示出四面体P-ABC体积,根据a+b=2,利用基本不等式,即可求四面体P-ABC体积的最大值.
解答:精英家教网(I)证明:∵AC⊥PE,AC⊥EF,又PE∩EF=E,∴AC⊥平面PEF,
∵AC?平面ABC,∴平面PEF⊥平面ABC,
∵平面PEF∩平面ABC=EF,PH⊥EF,PH?平面PEF,
∴PH⊥平面ABC.
(II)解:∵PE⊥AC,EF⊥AC
∴∠PEF为二面角P-AC-B的平面角,∴∠PEF=60°
∴EH=
1
2
PE=
1
2
DE
,PH=
3
2
DE,DH=
3
2
DE

以D为原点,DA,DC所在直线分别为x,y轴,DA的长度为单位长度,建立空间直角坐标系,则DC=
2
,A(1,0,0),B(1,
2
,0),C(0,
2
,0)
∴AC=
3
,DE=
DA•DC
AC
=
6
3

∴DH=
3
2
DE
=
6
2
,PH=
3
2
DE=
2
2

作HM⊥AD于M,HN⊥CD于N
∵∠ADF=∠DCA
∴HM=DHsin∠ADF=DHsin∠DCF=
2
2
,DM=
DH2-HM2
=1
∴H(1,
2
2
,0),P(1,
2
2
2
2

BP
=(0,-
2
2
2
2
)
CP
=(1,-
2
2
2
2
)

设平面PBC的法向量为
n
=(x,y,z),则由
n
BP
=0
n
CP
=0
,可得
-
2
2
y+
2
2
z=0
x-
2
2
y+
2
2
z=0

∴可取
n
=(0,1,1)
设直线DP与平面PBC所成角的大小为θ,则sinθ=|
n
DP
|
n
||
DP
|
|=
2
2

∴θ=45°
∴直线DP与平面PBC所成角的大小为45°;
(III)PE=DE=
ab
a2+b2
,∴PH=
3
2
DE=
3
ab
2
a2+b2

VP-ABC=
1
3
1
2
AB•BC•PH
=
3
12
a2b2
a2+b2

∵a+b=2
∴a2+b2=(a+b)2-2ab=4-2ab
ab≤(
a+b
2
)2=1
,当且仅当a=b=1时,(ab)max=1
∴V=
3
12
a2b2
a2+b2
=
3
12
a2b2
(a+b)2-2ab
=
3
12
a2b2
4-2ab
3
12
1
4-2
=
6
24

即当且仅当a=b=1时,四面体P-ABC体积的最大值为
6
24
点评:本题考查线面垂直,面面垂直,考查线面角,考查四面体体积的计算,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=
8
3
3
,BC=2,椭圆M的中心和准线分别是已知矩形的中心和一组对边所在直线,矩形的另一组对边间的距离为椭圆的短轴长,椭圆M的离心率大于0.7.
(I)建立适当的平面直角坐标系,求椭圆M的方程;
(II)过椭圆M的中心作直线l与椭圆交于P,Q两点,设椭圆的右焦点为F2,当∠PF2Q=
3
时,求△PF2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=1,AD=2,M为AD的中点,则
BM
BD
的值为
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

A 若方程ax-x-a=0有两个实数解,则a的取值范围是
(1,+∞)
(1,+∞)

B 如图,矩形ABCD中边长AB=2,BC=1,E为BC的中点,若F为正方形内(含边界)任意一点,则
AE
AF
的最大值为
9
2
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,将△ADE沿AE翻折到D'点,当D'在平面ABC上的射影落在AE上时,四棱锥D'-ABCE的体积是
2
6
-
2
12
2
6
-
2
12
;当D'在平面ABC上的射影落在AC上时,二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使
PQ
QD
,说明理由.
(2)问当Q点惟一,且cos<
BP
QD
>=
10
10
时,求点P的位置.

查看答案和解析>>

同步练习册答案