精英家教网 > 高中数学 > 题目详情
若以曲线y=x3+bx2+4x+c(c为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b的取值范围为
 
考点:利用导数研究曲线上某点切线方程
专题:综合题,导数的综合应用
分析:根据导数的几何意义求出函数f(x)在x=x0处的导数,从而求出切线的斜率,则
1
3
x02+2bx0+4>0对?x0∈R恒成立,然后利用判别式进行求解即可.
解答: 解:设点(x0,y0)为曲线y=x3+bx2+4x+c上的任意一点,
则该点处的切线斜率为k=
1
3
x02+2bx0+4;
∴由已知得
1
3
x02+2bx0+4≥0对?x0∈R恒成立;
∴△=4b2-
16
3
≤0,解得-
2
3
3
≤b≤
2
3
3

故答案为:[-
2
3
3
2
3
3
].
点评:本题以函数为载体,考查导数的几何意义,同时考查了转化与化归的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x,x+1,10-x}(x≥0),则f(x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为征求个人所得税法修改建议,某机构对当地居民的月收入调查10000人,根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)),因操作人员不慎,未标出第五组顶部对应的纵轴数据.
(Ⅰ)请你补上第五组顶部对应的纵轴数据,并求居民月收入在[3000,4000)的频率;
(Ⅱ)根据频率分布直方图估算样本数据的中位数;
(Ⅲ)为了分析居民收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人进行分析,则月收入在[2500,3000)的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足
x+y-1≤0
x-y+1≥0
y≥-1
,则z=
9y-18
x-2
+
x-2
y-2
的最小值为(  )
A、
13
2
B、
37
2
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据,并写出乙组数据的中位数;
(2)经过计算知甲、乙两人预赛的平均成绩分别为
.
x
=85,
.
x
=85,甲的方差为S
 
2
=35.3,S
 
2
=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.
(3)若将预赛成绩中的频率视为概率,记“甲在考试中的成绩不低于80分”为事件A,其概率为P(A);记“乙在考试中的成绩不低于80分”为事件B,其概率为P(B).则P(A)+P(B)=P(A+B)成立吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

记直线x-3y-1=0的倾斜角为α,曲线y=lnx在(2,ln2)处切线的倾斜角为β,则α+β=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为公差不为0的等差数列,Sn为前n项和,a5和a7的等差中项为11,且a2•a5=a1•a14
(Ⅰ)求an及Sn
(Ⅱ)令bn=
1
anan+1
,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R,g(x)=x2+(a+2)x+1,若a>0,且对任意x1∈[-1,2].都存在x2∈(0,+∞),使得g(x1)=f(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过(2,3)且在两坐标轴上截距相反的直线方程是
 

查看答案和解析>>

同步练习册答案