精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax,(a>0,a≠1),f(2)=4,则(  )
A、f(-2)>f(-1)
B、f(1)>f(2)
C、f(-2)>f(2)
D、f(-1)>f(-2)
考点:指数函数的图像与性质
专题:函数的性质及应用
分析:根据函数f(x)=ax,(a>0,a≠1),f(2)=4,得a=2,根据单调性求解判断.
解答: 解:∵函数f(x)=ax,(a>0,a≠1),f(2)=4,
∴a2=4,a=2,
∵y=2x,在区间(-∞,+∞)单调递增.
∴f(-1)>f(-2)
故选:D
点评:本题考查了指数函数的定义,单调性,属于容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的一元二次方程2x2-tx-2=0有两个实根为α,β,
(1)若x1<x2为区间[α,β]上的两个不同的点,求证:
(i)x12+x22>2x1x2
(ii)4x1x2-t(x1+x2)-4<0;
(2)设f(x)=
4x-t
x2+1
,f(x)在区间[α,β]上的最大值和最小值分别为A和B,g(t)=A-B,求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2,x≤-1
x2,-1<x<2
2x,x≥2

(1)求f(π);
(2)在坐标系中画出y=f(x)的图象;
(3)若f(a)=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2,则(  )
A、f(x)在(-∞,0)上是减函数
B、f(x)是减函数
C、f(x)是增函数
D、f(x)在(-∞,0)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

具有性质:f(
1
x
)=-f(x)
的函数,我们称为满足“倒负”交换的函数,下列函数:①y=x-
1
x
;②y=x+
1
x

③y=
x,(0<x<1)
0,(x=1)
-
1
x
(x>1)
中满足“倒负”变换的函数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的内角A,B,C所对边的长,若bcosA=c,则cosB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax+2+3恒过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对数函数的图象过点M(9,2),则此对数函数的解析式为(  )
A、y=log2x
B、y=log3x
C、y=log 
1
3
x
D、y=log 
1
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin?xcos?x+sin2?x-
1
2

(1)若f(x)图象中相邻两条对称轴间的距离不小于
π
2
,求ω的取值范围;
(2)若f(x)的最小正周期为π,f(
α
2
)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

同步练习册答案