精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2,则(  )
A、f(x)在(-∞,0)上是减函数
B、f(x)是减函数
C、f(x)是增函数
D、f(x)在(-∞,0)上是增函数
考点:二次函数的性质
专题:函数的性质及应用
分析:通过函数的解析式读出函数的开口方向,和对称轴,从而得出答案.
解答: 解:∵f(x)=-x2
开口向下,对称轴x=0,
∴f(x)在(-∞,0)递增,在(0,+∞)递减,
故选:D.
点评:本题考查了二次函数的性质问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中的一个椭圆C,它的中心在原点,左焦点为F(-
3
,0),右顶点为D(2,0),设点A(1,
1
2
).
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(Ⅲ)设O为坐标原点,过点F(
3
,0)的直线l与曲线C交于A,B两点,N为AB的中点,连结ON 并延长交曲线C于点E,且
OE
=2
ON
,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)的导函数f′(x)的图象,则下面判断正确的是(  )
A、函数f(x)在区间(-2,1)上单调递增
B、函数f(x)在x=1处取得极大值
C、函数f(x)在(4,5)上单调递增
D、当x=4时,f(x)取极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的三边长a,b,c成等差数列,且ab+bc+ac=18,则实数b的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上的一点,设点P到此抛物线的准线的距离为d1,到直线x-2y+10=0的距离为d2,则d1+d2的最小值为(  )
A、
11
5
B、4
C、5
D、
11
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+4x+3,
(1)若f(a+1)=0,求a的值;
(2)若函数g(x)=f(x)+cx为偶函数,求c的值;
(3)若函数g(x)=f(x)+cx在区间[-2,2]上是单调的,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax,(a>0,a≠1),f(2)=4,则(  )
A、f(-2)>f(-1)
B、f(1)>f(2)
C、f(-2)>f(2)
D、f(-1)>f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若设曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2015x1+log2015x2+…+log2015x2014的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={a2,a+1,-1},B={2a-1,|a-2|,3a2+4},-1∈A∩B,则a=
 

查看答案和解析>>

同步练习册答案