精英家教网 > 高中数学 > 题目详情
如图,在边长为2的菱形ABCD中,  ,现将沿BD翻折至,使二面角的大小为,求和平面BDC所成角的正弦值是
0.75
中点,连接,过点,连接
因为是边长为2的菱形,中点
所以,则是二面角的平面角,从而有
因为,所以,所以
,所以,则和平面所成角
中,因为,所以
从而有
所以在中,因为,所以,从而,即和平面所成角的正弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分9分)
如图所示的多面体中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)证明:平面
(Ⅱ)设二面角的平面角为,求的值;
(Ⅲ)的中点,在上是否存在一点,使得∥平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱,底面为正三角形,平面,,中点.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,与平面所成角的余弦值为( ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三条不重合的直线两个不重合的平面,给出下列四个命题:
①若
②若
③若
④若. 其中真命题是       (   )
A.① ②B.③ ④C.① ③D.② ④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

体积为的球的内接正方体的棱长为_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四边形为矩形,平面,平面于点,且点上.
(Ⅰ)求证:
(Ⅱ)求四棱锥的体积;
(Ⅲ)设点在线段上,且
试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

矩形中,的中点,为边上一动点,则的最大值为(  )
A.B.C.D.1

查看答案和解析>>

同步练习册答案