精英家教网 > 高中数学 > 题目详情
若关于x的方程x2+4=ax有正实根,则实数a的取值范围是______.
由x2+4=ax得x2-ax+4=0,设函数f(x)=x2-ax+4,所以要使方程x2+4=ax有正实根,则函数f(x)=x2-ax+4与x轴的正半轴有交点.
因为f(0)=4>0,所以要使函数f(x)=x2-ax+4与x轴的正半轴有交点,则必有
△=a2-4×4≥0
-
-a
2
>0
,即
a2≥16
a>0
,解得a≥4

所以a≥4.
故答案为:a≥4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中三个内角为A、B、C,若关于x的方程x2-xcosAcosB-cos2
C
2
=0有一根为1,则△ABC一定是(  )
A、直角三角形
B、等腰三角形
C、锐角三角形
D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+ax-1=0在(-1,2)内恰好有一个解,则a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、若关于x的方程x2+(2-m2)x+2m=0的两根一个比1大一个比1小,则m的范围是
m>3或m<-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+2(a-1)x+2a+6=0有一正一负两实数根,则实数a的取值范围
a<-3
a<-3

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2-4|x|+5=m有四个不同的实数解,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案