精英家教网 > 高中数学 > 题目详情
把一颗骰子投掷两次,观察出现的点数,记第一次出现的点数为a,第二次出现的点数为b,则方程组
ax+by=3
x+2y=2
只有一个解的概率为(  )
分析:利用分布计数原理求出骰子投掷2次所有的结果,通过解二元一次方程组判断出方程组有唯一解的条件,先求出不
满足该条件的结果个数,再求出方程组有唯一解的结果个数,利用古典概型的概率公式求出方程组只有一个解的概率.
解答:解:骰子投掷2次所有的结果有6×6=36种,由方程组
ax+by=3
x+2y=2
 可得得(b-2a)y=3-2a,当b-2a≠0时,
方程组有唯一解.
当b=2a时包含的结果有:当a=1时,b=2; 当a=2时,b=4,当a=3时,b=6共三个,
所以方程组只有一个解包含的基本结果有36-3=33种,
由古典概型的概率公式得只有一个解的概率为
33
36
=
11
12

故选B.
点评:本题考查古典概型及其概率计算公式的应用,求某个事件的概率,应该先判断出事件的概型,再选择合适的概率
公式求出事件的概率,常考的是古典概型,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,-2),则向量m与向量n垂直的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)把一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b.已知直线l1:x+2y=2,直线l2:ax+by=4,则两直线l1、l2平行的概率为(  )
A、
1
36
B、
2
36
C、
3
36
D、
6
36

查看答案和解析>>

科目:高中数学 来源: 题型:

把一颗骰子投掷两次,记第一次出现的点数为a2,第二次出现的点数为b2(其中a>0,b>0).
(Ⅰ)若记事件A“焦点在x轴上的椭圆的方程为
x2
a2
+
y2
b2
=1
”,求事件A的概率;
(Ⅱ)若记事件B“离心率为2的双曲线的方程为
x2
a2
-
y2
b2
=1
”,求事件B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

把一颗骰子投掷两次,记第一次出现的点数为a2,第二次出现的点数为b2(其中a>0,b>0).试求:
(Ⅰ)方程
x2
a2
+
y2
b2
=1
表示焦点在x轴上的椭圆的概率;
(Ⅱ)方程
x2
a2
-
y2
b2
=1
表示离心率为2的双曲线的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)把一颗骰子投掷两次,第一次得到的点数记为a,第二次得到的点数记为b,以a,b为系数得到直线:l1:ax+by=3,又已知直线l2:x+2y=2,则直线l1与l2相交的概率为(  )

查看答案和解析>>

同步练习册答案