精英家教网 > 高中数学 > 题目详情

已知△ABC的面积S=数学公式(b2+c2-a2),其中a,b,c分别为角A,B,C所对的边,
(1)求角A的大小;
(2)若a=2,求bc的最大值.

解:(1)∵S=bc•sinA cosA=即b2+c2-a2=2bc•cosA
∴S=(b2+c2-a2)变形得×2bc•cosA=bc•sinA
∴tanA=1
又0<A<π,
∴A=
(2)由(1)bc=(b2+c2-a2)≥(2bc-4)=bc-
∴(1-)bc≤
∴bc≤4+2
∴bc的最大值为4+2
分析:(1)利用三角形的面积公式化简已知等式的左边,利用余弦定理表示出cosA,变形后代入等式的右边,利用同角三角函数间的基本关系弦化切整理后求出tanA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(2)先根据(1)得出bc≥bc-,进而可知(1-)bc≤,然后即可求出bc的最大值.
点评:此题考查了三角形的面积公式,余弦定理以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•和平区三模)已知△ABC的面积S满足
3
≤S≤3,且
AB
BC
=6,
AB
BC
的夹角为θ.
(1)求θ的范围.
(2)求函数f(θ)=
1-
2
cos(2θ-
π
4
)
sinθ
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是三内角A,B,C的对边,已知△ABC的面积S=
3
,a=2
3
,b=2,求第三边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积S=5
3
,AB=4
,最大边AC=5,那么BC边的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)已知△ABC的面积S=
3
∠A=
π
3
,则
AB
AC
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•宝山区一模)已知△ABC的面积S=4,b=2,c=6,则sinA=
2
3
2
3

查看答案和解析>>

同步练习册答案