精英家教网 > 高中数学 > 题目详情
已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。
(1);(2)直线恒过定点

试题分析:本题主要考查椭圆的标准方程以及几何性质、直线的标准方程、直线与椭圆的位置关系、韦达定理等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用点在椭圆上和离心率得到方程组,解出a和b的值,从而得到椭圆的标准方程;第二问,需要对直线MN的斜率是否存在进行讨论,(ⅰ)若存在点P在MN上,设出直线MN的方程,由于直线MN与椭圆相交,所以两方程联立,得到两根之和,结合中点坐标公式,得到直线MN的斜率,由于直线MN与直线垂直,从而得到直线的斜率,因为直线也过点P,写出直线的方程,经过整理,即可求出定点,(ⅱ)若直线MN的斜率不存在,则直线MN即为,而直线为x轴,经验证直线,也过上述定点,所以综上所述,有定点.
(1)因为点在椭圆上,所以, 所以,        1分
因为椭圆的离心率为,所以,即,      2分
解得,  所以椭圆的方程为.        4分
(2)设
①当直线的斜率存在时,设直线的方程为

所以, 因为中点,所以,即
所以,                  8分
因为直线,所以,所以直线的方程为
 ,显然直线恒过定点.    10分
②当直线的斜率不存在时,直线的方程为,此时直线轴,也过点.                 
综上所述直线恒过定点.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率.

(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

(1)求的方程;
(2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.
①证明:
②记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是平面两定点,点满足,则点的轨迹方程是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的两顶点为,且左焦点为F,是以角B为直角的直角三角形,则椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆:的左、右焦点,过倾斜角为的直线与该椭圆相交于P,两点,且.则该椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别为椭圆:的左右顶点,为右焦点,在点处的切线,上异于的一点,直线,中点,有如下结论:①平分;②与椭圆相切;③平分;④使得的点不存在.其中正确结论的序号是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上两点,点关于轴的对称点为(异于点),若直线分别交轴于点,则(     )
A.0B.1C.D.2

查看答案和解析>>

同步练习册答案