精英家教网 > 高中数学 > 题目详情
椭圆的两顶点为,且左焦点为F,是以角B为直角的直角三角形,则椭圆的离心率为 (   )
A.B.C.D.
B

试题分析:依题意可知点F(-c,0)直线AB斜率为 ,直线BF的斜率为 ,∵∠FBA=90°,∴( )•( 整理得,即 ,即e2-e-1=0,解得e=∵e<1,∴e=,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且,求a,b.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆.
(1)我们知道圆具有性质:若为圆O:的弦AB的中点,则直线AB的斜率与直线OE的斜率的乘积为定值。类比圆的这个性质,写出椭圆的类似性质,并加以证明;
(2)如图(1),点B为在第一象限中的任意一点,过B作的切线分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(3)如图(2),过椭圆上任意一点的两条切线PM和PN,切点分别为M,N.当点P在椭圆上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
    
图(1)                                    图(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.

(1)求椭圆的方程;
(2)过点任作一动直线交椭圆两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)(2011•福建)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于(        )
A.B.或2C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于两点,点是线段上的一点,且点在直线上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2011•浙江)已知椭圆C1=1(a>b>0)与双曲线C2:x2=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )
A.a2=B.a2=3C.b2=D.b2=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在轴的椭圆 的左、右焦点分别为,直线过右焦点,和椭圆交于两点,且满足,则椭圆的标准方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

查看答案和解析>>

同步练习册答案