精英家教网 > 高中数学 > 题目详情
,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且,求a,b.
(1);(2).
试题分析:本题第(1)问,可结合与x轴垂直,由勾股定理及椭圆定义求出椭圆的离心率;对第(2)问,观察到是三角形的中位线,然后结合向量的坐标运算及椭圆方程,可求出a,b.
试题解析:(1)由题意知,,所以,由勾股定理可得:,由椭圆定义可得:=,解得C的离心率为
(2)由题意,原点O为的中点,∥y轴,所以直线与y轴的交点D(0,2)是线段的中点,故,即,由,设,由题意知,则
,即,代入C的方程得,将代入得:,解得.
【易错点】对第(1)问,较容易,大部分同学都能计算出;对第(2)问,一部分同学考虑不到中位线,
容易联立方程组求解而走弯路,并且容易出现计算失误.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:)的左焦点为,离心率为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的焦点在x轴上,左右顶点分别为,上顶点为B,抛物线分别以A,B为焦点,其顶点均为坐标原点O,相交于直线上一点P.
(1)求椭圆C及抛物线的方程;
(2)若动直线与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

F1,F2是椭圆=1的左、右两焦点,P为椭圆的一个顶点,若△PF1F2是等边三角形,则a2=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左右焦点,上一点且轴垂直,直线的另一个交点为
(1)若直线的斜率为,求的离心率;
(2)若直线轴上的截距为,且,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:的左、右焦点为,离心率为,过的直线交C于A、B两点,若的周长为,则C的方程为
A.    B.   C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是平面两定点,点满足,则点的轨迹方程是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的两顶点为,且左焦点为F,是以角B为直角的直角三角形,则椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若成等比数列,则此椭圆的离心率为________.(离心率)

查看答案和解析>>

同步练习册答案