精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(ax-2)ex在x=1处取得极值.
(1)求a的值;
(2)求函数f(x)在[m,m+1]上的最小值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:导数的综合应用
分析:(1)f′(x)=aex+(ax-2)ex=(ax+a-2)ex,由此利用导数性质能求出a=1.
(2)由f(x)=(x-2)ex,得f′(x)=ex+(x-2)ex=(x-1)ex.由f′(x)=0,得x=1,由此列表讨论,能求出f(x)在[m,m+1]上的最小值.
解答: 解:(1)f′(x)=aex+(ax-2)ex=(ax+a-2)ex
由已知得f'(1)=0即(2a-2)ex=0解得:a=1
当a=1时,在x=1处函数f(x)=(x-2)ex取得极小值,所以a=1.(4分)
(2)由f(x)=(x-2)ex
得f′(x)=ex+(x-2)ex=(x-1)ex
由f′(x)=0,得x=1,
列表讨论:
x(-∞,1)1(1,+∞)
f'(x)-0+
f(x)
所以函数f(x)在(-∞,1)递减,在(1,+∞)递增;
当m≥1时,f(x)在[m,m+1]单调递增,fmin(x)=f(m)=(m-2)em
当0<m<1时,m<1<m+1f(x)在[m,1]单调递减,
在[1,m+1]单调递增,fmin(x)=f(1)=-e.
当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,
fmin(x)=f(m+1)=(m-1)em+1
综上,f(x)在[m,m+1]上的最小值:
fmin(x)=
(m-2)emm≥1
-e,0<m<1
(m-1)em+1m≤0
.(4分)
点评:本题考查实数值的求法,考查函数的最小值的求法,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的极值:
(1)f(x)=
x3-2
2(x-1)2

(2)f(x)=x2e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差大于0,a3和a5是方程x2-14x+45=0的两根,数列{bn}的前n项和为Sn,且有Sn=
1-bn
2
(n∈N*
(1)求{an}和{bn}的通项;
(2)若{an•bn}的前n项和为Tn,且ax2+(a-1)x-
2
3
≤Tn对任意n∈N*恒成立,试求x的取值集合,其中a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在非零常数T,对任意x∈R均有f(x+T)=T•f(x),则称f(x)为T线性相关函数.
(1)判断g(x)=x是否为T线性相关的函数;
(2)若h(x)=sinkx为T线性相关函数,求实数k应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx-lnx,m∈R
(Ⅰ)若函数f(x)在[1,3]上是增函数,求实数m的取值范围;
(Ⅱ)令F(x)=f(x)-x2,是否存在实数m,当x∈(0,e](e是自然常数)时,函数F(x)的最小值是2,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+alnx(a∈R).
(Ⅰ)当a=-1时,求函数f(x)的极值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数g(x)=f(x)+
1
x
在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1与x轴交于A,B两点,与y轴交于点C,M是圆O上任意一点,直线AM与BC交于点P,CM交x轴于点N,设直线PM,PN的斜率分别为m,n.
(1)试求点M,N坐标;
(2)求证:m-2n为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α-
π
4
)=m,则cos2
3
4
π-α)-tan(kπ+α-
π
4
)•cos(α-
7
4
π)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x3-3x2-9x+2-m≥0对任意x∈[-2,2]恒成立,则m的取值范围是
 

查看答案和解析>>

同步练习册答案