分析 (1)证明∠BAD=∠EAD,即可证明:$\widehat{DE}$=$\widehat{BD}$;
(2)证明△EAD∽△FED,利用比例关系求DF的长.
解答 (1)证明:∵EB=BC
∴∠C=∠BEC
∵∠BED=∠BAD
∴∠C=∠BED=∠BAD…(2分)
∵∠EBA=∠C+∠BEC=2∠C,AE=EB
∴∠EAB=∠EBA=2∠C,
又∠C=∠BAD
∴∠EAD=∠C
∴∠BAD=∠EAD…(4分)
∴$\widehat{DE}=\widehat{DB}$.…(5分)
(2)解:由(1)知∠EAD=∠C=∠FED,又∠EDA=∠EDA
∴△EAD∽△FED…(8分)
∴$\frac{DE}{DF}=\frac{AD}{DE}$
又∵DE=4,AD=8,
∴DF=2.…(10分)
点评 本题考查相似三角形的判定与性质,考查等角对等弧,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4x}$ | B. | $\frac{1}{2x}$ | C. | $\frac{2}{x}$ | D. | $\frac{1}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞) | B. | (2$\sqrt{2}$,3) | C. | (2,3) | D. | (2$\sqrt{2}$,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{\sqrt{21}}{7}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com