精英家教网 > 高中数学 > 题目详情
已知双曲线的中心在原点,对称轴为坐标轴,焦点在x轴上,两准线间的距离为,并且与直线y=(x-4)相交所得线段的中点的横坐标为-,求这个双曲线的方程.

解析:设双曲线的方程为=1(a>0,b>0),直线与双曲线两交点为A(x1,y1)、B(x2,y2).由题意知=,即=.

得(9b2-a2)x2+8a2x-16a2-9a2b2=0.

∵9b2-a2≠0,由韦达定理得x1+x2=,即=-.∴7a2=9b2.

∴所求双曲线方程为-=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
2
,且过点(4,-
10
)
,则双曲线的标准方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点为F1(5,0),F2(-5,0),且过点(3,0),
(1)求双曲线的标准方程.
(2)求双曲线的离心率及准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-
10
)

(1)求双曲线方程;
(2)设A点坐标为(0,2),求双曲线上距点A最近的点P的坐标及相应的距离|PA|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-
10
)
,A点坐标为(0,2),则双曲线上距点A距离最短的点的坐标是
7
,1)
7
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知双曲线的中心在原点,焦点在x轴上,一条渐近线方程为y=
3
4
x
,则该双曲线的离心率是
5
4
5
4

查看答案和解析>>

同步练习册答案