精英家教网 > 高中数学 > 题目详情

设椭圆的焦点在轴上.
(1)若椭圆的焦距为1,求椭圆的方程;
(2)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线轴与点,并且,证明:当变化时,点在某定直线上.

(1);(2)详见解析.

解析试题分析:(1)由椭圆的焦距为,可得,又由,从而可以建立关于的方程,即可解得,因此椭圆的方程为;(2)根据题意,可设,条件中关于的约束只有在椭圆上,因此需从为出发点建立满足的关系式,由题意可得直线的斜率,直线的斜率
故直线的方程为,当,即点的坐标为,
故直线的斜率为,因此,化简得,又由点在椭圆上,可得,即点在直线上.
试题解析:(1)∵焦距为1,∴,∴
故椭圆的方程为
(2)设,其中,由题设知
则直线的斜率,直线的斜率
故直线的方程为,当,即点的坐标为,
∴直线的斜率为
,∴,化简得
将上式代入椭圆的方程,由于在第一象限,解得,即点在直线上.  
考点:1.椭圆的标准方程;2.两直线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点.
(1)若是椭圆在第一象限上一点,且,求点坐标;
(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为为上顶点,为坐标原点,若△的面积为,且椭圆的离心率为
(1)求椭圆的方程;
(2)是否存在直线交椭圆于两点, 且使点为△的垂心?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线轴于点
(1)当时,
(1)若椭圆的离心率为,求椭圆的方程;
(2)当点P在直线上时,求直线的夹角;
(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.
(1)已知直线的斜率为,用表示点的坐标;
(2)若过原点的直线垂直,证明:点到直线的距离的最大值为.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

直线l过抛物线 (a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=               

查看答案和解析>>

同步练习册答案