如图,设椭圆
动直线
与椭圆
只有一个公共点
,且点
在第一象限.
(1)已知直线
的斜率为
,用
表示点
的坐标;
(2)若过原点
的直线
与
垂直,证明:点
到直线
的距离的最大值为
.
(1)点
的坐标为
;(2)详见解析.
解析试题分析:(1)已知直线
的斜率为
,用
表示点
的坐标,由已知椭圆
动直线
与椭圆
只有一个公共点
,可设出直线
的方程为
,结合椭圆方程,得
,消去
得,
,令
,得
,即
,代入原式得点
的坐标为
,再由点
在第一象限,得
,可得点
的坐标为
;(2)点
到直线
的距离的最大值为
,由直线
过原点
且与
垂直,得直线
的方程为
,利用点到直线距离公式可得
,即
,由式子特点,需消去
即可,注意到
,代入即可证明.
(1)设直线
的方程为
,由
,消去
得,
,由于直线
与椭圆
只有一个公共点
,故
,即
,解得点
的坐标为
,由点
在第一象限,故点
的坐标为
;
(2)由于直线
过原点
,且与
垂直,故直线
的方程为
,所以点
到直线
的距离
,整理得
,因为
,所以
,当且仅当
时等号成立,所以点
到直线
的距离的最大值为
.
点评:本题主要考查椭圆的几何性质,点单直线距离,直线与椭圆的位置关系等基础知识,同时考查解析几何得基本思想方法,基本不等式应用等综合解题能力。
科目:高中数学 来源: 题型:解答题
设椭圆
的焦点在
轴上.
(1)若椭圆
的焦距为1,求椭圆
的方程;
(2)设
分别是椭圆的左、右焦点,
为椭圆
上的第一象限内的点,直线
交
轴与点
,并且
,证明:当
变化时,点
在某定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,,右顶点为A,上顶点为B.已知
=
.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点
,经过点
的直线
与该圆相切与点M,
=
.求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点
到点
的距离比它到
轴的距离多1,记点
的轨迹为
.
(1)求轨迹为
的方程;
(2)设斜率为
的直线
过定点
,求直线
与轨迹
恰好有一个公共点,两个公共点,三个公共点时
的相应取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆![]()
的焦点在x轴上,左右顶点分别为
,上顶点为B,抛物线
分别以A,B为焦点,其顶点均为坐标原点O,
与
相交于直线
上一点P.
(1)求椭圆C及抛物线
的方程;
(2)若动直线
与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点
,求
的最小值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知两条抛物线
和
,过原点
的两条直线
和
,
与
分别交于
两点,
与
分别交于
两点.
(1)证明:![]()
(2)过原点
作直线
(异于
,
)与
分别交于
两点.记
与
的面积分别为
与
,求
的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图
为椭圆C:![]()
的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率
,
的面积为
.若点
在椭圆C上,则点
称为点M的一个“椭圆”,直线
与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.![]()
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
的直线
,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com