精英家教网 > 高中数学 > 题目详情

已知a,b,c分别是△ABC的三个内角A,B,C的对边,若c=2,b=数学公式,A+C=3B,则sin C=________.


分析:根据三角形内角和,结合A+C=3B可算出B=45°.再用正弦定理结合题中数据,即可算出sinC的值.
解答:∵△ABC中,A+C=3B,A+B+C=180°,∴B=45°
根据正弦定理,得,所以sinC===
故答案为:
点评:本题给出三角形三个内角的一个关系式,结合两边的长计算某个角的正弦值,着重考查了三角形内角和定理和正弦定理等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案