精英家教网 > 高中数学 > 题目详情
正四面体ABCD的棱长为1,G是△ABC的中心,M在线段DG上,且∠AMB=90°,则GM的长为(  )精英家教网
A、
1
2
B、
2
2
C、
3
3
D、
6
6
分析:由题意可知,三角形AMB是等腰直角三角形,求得MA,然后求得MG.
解答:解:M在AB垂直平分线上,MA=MB=
2
2
MG=
MA2-AG2
=
6
6

故选D.
点评:本题考查棱锥的结构特征,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正四面体ABCD的棱长为a,点E,F,G分别是棱AB,AD,DC的中点,则三个数量积:①2
BA
AC
;②2
AD
BD
;③2
FG
AC
中,结果为a2的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,直线l⊥平面α,垂足为O,正四面体ABCD的棱长为4,C在平面α内,B是直线l上的动点,则当O到AD的距离为最大时,正四面体在平面α上的射影面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD的棱长为a,E为CD上一点,且CE:ED=2:1,则截面△ABE的面积是(  )

查看答案和解析>>

同步练习册答案