精英家教网 > 高中数学 > 题目详情
6.下列4个命题:
①命题“若x2-3x+2=0,则x=l”的逆否命题为:“若x≠1,则x2-3x+2≠0”;
②若p:(x一1)(x-2)≤0,q:log2(x+1)≥1,则p是q的充分不必要条件;
③若?p或q是假命题,则p且q是假命题;
④对于命题p:存在x∈R,使得x2+x+1<0.则,?p:任意x∈R,均有x2+x+l≥0;
其中正确命题的个数是(  )
A..1个B.2个C..3个D.4个

分析 写出原命题的逆否命题,可判断①;根据充要条件的定义,可判断②;根据复合命题真假判断的真值表,可判断③;写出原命题的否定,可判断④

解答 解:①命题“若x2-3x+2=0,则x=l”的逆否命题为:“若x≠1,则x2-3x+2≠0”,故正确;
②p:(x一1)(x-2)≤0?x∈[1,2],q:log2(x+1)≥1?x∈[1,+∞),则p是q的充分不必要条件,故正确;
③若¬p或q是假命题,¬p和q均为假命题,则p真q假,则p且q是假命题,故正确;
④对于命题p:存在x∈R,使得x2+x+1<0.则,?p:任意x∈R,均有x2+x+l≥0,故正确;
故正确的命题个数为4,
故选:D

点评 本题以命题的真假判断与应用为载体,考查了复合命题,四种命题,充要条件,特称命题的否定,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知a∈R,函数f(x)=log2($\frac{1}{x}$+a).
(1)当a=1时,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+$\frac{a+1}{x}$)恒成立,求a的取值范围;
(3)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y使得x2+4y2-2x+8y+1=0,则x+2y的最小值等于-2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列命题中
①函数f(x)=($\frac{1}{3}$)x的递减区间是(-∞,+∞);
②若函数f(x)=$\sqrt{x-1}$,则函数定义域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x-y),那么(3,1)在映射f下的象是(4,2).
其中正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=x2+mx+1,使不等式f(x)≥3对任意的m∈[-1,1]恒成立的实数x的取值范围为(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.记 a=tanθ,b=sinθ,c=cosθ,$θ∈\{θ\left|{-\frac{π}{4}<θ<\frac{3π}{4},θ≠0,\frac{π}{4},\frac{π}{2}}\right.$}中,若 a,b,c三数中最大的数是b,则θ的取值范围是($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦点为F1,F2,若点P在椭圆上,且满足|PO|2=|PF1|•|PF2|(其中 O为坐标原点),则称点P为“•”点,则此椭圆上的“•”点有(  )个.
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数y=f(x)的定义域为R,对于给定的正数K,定义函数${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$,取函数f(x)=-x2+2x,若对于任意的x∈(-∞,+∞),恒有fK(x)=f(x),则(  )
A.K的最大值为2B.K的最小值为2C.K的最大值为1D.K的最小值为1

查看答案和解析>>

同步练习册答案