精英家教网 > 高中数学 > 题目详情
1.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$的值.

分析 由已知条件求出sinα,进一步求得tanα,然后利用诱导公式化简求值.

解答 解:由5x2-7x-6=0,得x=2或x=$-\frac{3}{5}$,
∵sinα是方程5x2-7x-6=0的根,∴sinα=$-\frac{3}{5}$.
又α是第三象限角,∴cosα=$-\frac{4}{5}$,tanα=$\frac{sinα}{cosα}=\frac{3}{4}$.
∴$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$=$\frac{-sin(\frac{3π}{2}+α)sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$
=$\frac{cosα(-cosα)ta{n}^{3}α}{sinα(-sinα)}$=tanα=$\frac{3}{4}$.

点评 本题考查三角函数中的恒等变换应用,考查了诱导公式的应用,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{2x+y-2≥0}\end{array}\right.$,那么|x-y|的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,左焦点到左顶点的距离为1.
(1)求椭圆C的标准方程;
(2)过点M(1,1)的直线与椭圆C相交于A,B两点,且点M为弦AB中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AB=3,AC=2,BC=4,则$\overrightarrow{BA}$•$\overrightarrow{AC}$等于(  )
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+1.
(1)判断函数f(x)的奇偶性;
(2)用定义法证明函数f(x)在区间(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列4个命题:
①命题“若x2-3x+2=0,则x=l”的逆否命题为:“若x≠1,则x2-3x+2≠0”;
②若p:(x一1)(x-2)≤0,q:log2(x+1)≥1,则p是q的充分不必要条件;
③若?p或q是假命题,则p且q是假命题;
④对于命题p:存在x∈R,使得x2+x+1<0.则,?p:任意x∈R,均有x2+x+l≥0;
其中正确命题的个数是(  )
A..1个B.2个C..3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.计算2log525+3log264-8log71的值为(  )
A.14B.8C.22D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四种说法中,正确的个数有(  )
①命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x${\;}_{0}^{2}$-3x0-2≤0”;
②“命题P∨Q为真”是“命题P∧Q为真”的必要不充分条件;
③?m∈R,使$f(x)=m{x^{{m^2}+2m}}$是幂函数,且在(0,+∞)上是单调递增;
④不过原点(0,0)的直线方程都可以表示成$\frac{x}{a}+\frac{y}{b}=1$;
⑤在线性回归分析中,相关系数r的值越大,变量间的相关性越强.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若log0.2x>1,则x的取值范围是(0,0.2).

查看答案和解析>>

同步练习册答案