| A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
分析 由余弦定理可得cosA 的值,再根据$\overrightarrow{BA}$•$\overrightarrow{AC}$=|$\overrightarrow{BA}$|•|$\overrightarrow{AC}$|•cos(π-A),求得它的值.
解答 解:△ABC中,∵AB=3,AC=2,BC=4,
则由余弦定理可得cosA=$\frac{{AB}^{2}{+AC}^{2}{-BC}^{2}}{2AB•AC}$=-$\frac{1}{4}$,
$\overrightarrow{BA}$•$\overrightarrow{AC}$=|$\overrightarrow{BA}$|•|$\overrightarrow{AC}$|•cos(π-A)=3•2•$\frac{1}{4}$=$\frac{3}{2}$,
故选:D.
点评 本题主要考查余弦定理,两个向量的数量积的定义,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3lg2 | B. | 2lg2 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com