分析 利用函数f(x)是偶函数,将不等式f(1-x)<f(2x)等价为f(|1-x|)<f(|2x|),然后利用函数在[0,+∞)上是单调增函数,进行求解.
解答 解:∵函数f(x)是偶函数,∴不等式f(1-x)<f(2x)等价为f(|1-x|)<f(|2x|),
∵函数在[0,+∞)上是单调增函数,
∴|1-x|<|2x|,即3x2+2x-1>0,
解得x>$\frac{1}{3}$或x<-1,
即x的取值范围是:x>$\frac{1}{3}$或x<-1.
故答案为:x>$\frac{1}{3}$或x<-1.
点评 本题考查函数的奇偶性与单调性综合应用,解决本题的关键是利用函数的性质将不等式进行转化.若函数为偶函数,则f(a)<f(b)等价为f(|a|)<f(|b|).
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\sqrt{x^2}$,$g(x)={(\sqrt{x})^2}$ | B. | f(x)=2log2x,$g(x)={log_2}{x^2}$ | ||
| C. | f(x)=ln(x-1)-ln(x+1),$g(x)=ln(\frac{x-1}{x+1})$ | D. | f(x)=lg(1-x)+lg(1+x),g(x)=lg(1-x2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com