已知O为坐标原点,P1,P2是双曲线
-
=1上的点.P是线段P1P2的中点,直线OP,P1P2的斜率分别为k1,k2,若2≤k1≤4,则k2的取值范围是( )
![]()
科目:高中数学 来源: 题型:
![]()
描述学习某学科知识的掌握程度.其中
表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数a与学科知识有关
(1)证明:当x
7时,掌握程度的增长量f(x+1)- f(x)总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],
(127,133].当学习某学科知识6次时
,掌握程度是85%,请确定相应的学科.
查看答案和解析>>
科目:高中数学 来源: 题型:
设函
数
.
(1)在区间
上画出函数
的图像;
(2
)设集合
. 试判断集合
和
之间的关系,并给出证明;
(3)当
时,求证:在区间
上,
的图像位于函数
图像的上方.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知点F(-c,0)(c>0)是双曲线
-
=1(a>0,b>0)的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且点P在抛物线y2=4cx上,则e2等于( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
+
=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心坐标为(p,q).
(1)当p+q≤0时,求椭圆的离心率的取值范围;
(2)若点D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,
的最小值为
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,动点P到定点(1,0)的距离与到定直线x=2的距离之比为
,设动点P的轨迹为C.
(1)求出轨迹C的方程;
(2)设动直线l:y=kx-
与曲线C交于A,B两点,问在y轴上是否存在定点G,使∠AGB为直角?若存在,求出G的坐标,并求△AGB面积的最大值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com