精英家教网 > 高中数学 > 题目详情
某大学有本科生8000人,其中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从所有本科生中抽取一个容量为260的样本,则应抽二年级的学生(  )
A、100人B、60人
C、80人D、20人
考点:分层抽样方法
专题:概率与统计
分析:由一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从所有本科生中抽取一个容量为260的样本,能求出应抽二年级的学生人数.
解答: 解:∵大学有本科生8000人,其中一、二、三、四年级的学生比为5:4:3:1,
要用分层抽样的方法从所有本科生中抽取一个容量为260的样本,
∴应抽二年级的学生人数为:
260×
4
5+4+3+1
=80(人).
故选:C.
点评:本题考查分层抽样的应用,解题时要认真审题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设火箭发射成功的概率为0.99,若发射10次,其中失败的次数为X,则E(X)等于(  )
A、0.01
B、9.9
C、0.1
D、C
 
1
10
0.01k0.9910-k

查看答案和解析>>

科目:高中数学 来源: 题型:

有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线:已知直线b∥平面α,直线a?平面α,则直线b∥直线a”,结论显然是错误的,这是因为(  )
A、大前提错误
B、小前提错误
C、推理形式错误
D、非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,墙上挂有边长为2的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为1的圆孤,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是(  )
A、
π
4
B、
π
8
C、1-
π
4
D、1-
π
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于(  )
A、
2
3
B、
3
3
C、
2
2
3
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

3x
-
1
x
n的展开式中只有第5项的二项式系数最大,则展开式中的常数项是(  )
A、28B、-28
C、70D、-70

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥P-ABCD中,侧面与底面ABCD所成的角为60°,E是PB的中点,求异面直线PD与AE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起到△APM,使得平面APM⊥平面ABCM,点E在线段PB上,且PE=
1
3
PB.
(Ⅰ)求证:AP⊥BM
(Ⅱ)求二面角E-AM-P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an+1=2an+2n+2
(1)求a2,a3的值并证明数列{
an
2n
}为等差数列;
(2)bn=(-1)n+1
an
2n
,Tn=b1+b2+…+bn,求T51及Tn
(3)令Cn=|
1
bnbn+1
|,Mn=C1+C2+…+Cn,求Mn的值.

查看答案和解析>>

同步练习册答案