精英家教网 > 高中数学 > 题目详情
已知函数.若,求的值;当时,求的单调区间.
 ;
时, 的单调递增区间为,单调递减区间为

试题分析:因为, ,
所以,  (1分)
 (2分)
所以有:,解得 (3分)
时,   (5分)
  (7分)
时,,  
时,
时,,  (9分)
所以的单调递增区间为,单调递减区间为。(10分)
点评:中档题,利用导数研究函数的单调性,是导数应用的基本问题,主要依据“在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数”。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若上是增函数,求实数的取值范围.
(Ⅱ)若的一个极值点,求上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围.
注:是自然对数的底数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.
(3) 求证:,(其中是自然对数的底).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间上是单调递减函数,则实数的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若,求函数的单调区间;
(Ⅱ)若函数的图象在点(2,f(2))处的切线的倾斜角为,对于任意的,函数 的导函数)在区间上总不是单调函数,求的取值范围;  
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知都是定义在R上的函数,,且,在有穷数列 中,任意取正整数,则前项和大于的概率是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在R 上可导,且满足,则(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求的单调区间.
(2)设,求函数上的最大值;

查看答案和解析>>

同步练习册答案