精英家教网 > 高中数学 > 题目详情
已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求的单调区间.
(2)设,求函数上的最大值;
(1)(2)

试题分析:(1)
函数的图像关于直线对称,则
直线轴的交点为,且
,且,解得

,所以f(x)在R上单调递增.                                ……4分
(2)
其图像如图所示.当时,
根据图像得:

(ⅰ)当时,最大值为
(ⅱ)当时,最大值为
(ⅲ)当时,最大值为.                                  ……10分
点评:用导数可以解决函数中求最值,单调性,极值等问题,要注意函数的定义域.分类讨论时,要注意分类标准要不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)
已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.若,求的值;当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数处取极值,则            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(1)求函数的最小值;
(2)若≥0对任意的恒成立,求实数的值;
(3)在(2)的条件下,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)设M是由满足下列条件的函数f (x)构成的集合:①方程f (x)一x=0有实根;②函数的导数满足0<<1.
(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)一x=0只有一个实根;
(2)判断函数是否是集合M中的元素,并说明理由;
(3)设函数f(x)为集合M中的任意一个元素,对于定义域中任意
证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)试用含的代数式表示
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数处取得极值,记点,证明:线段与曲线存在异于的公共点;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数.
(Ⅰ)若曲线在点处与直线相切,求的值;
(Ⅱ)求函数的极值点与极值.

查看答案和解析>>

同步练习册答案