精英家教网 > 高中数学 > 题目详情
20.已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,旋转形成的圆柱的侧面积最大?最大侧面积是多少?

分析 设矩形的长和宽分别为x和y,圆柱的侧面积为z,根据矩形的周长为36,结合基本不等式可得答案.

解答 解:设矩形的长和宽分别为x和y,圆柱的侧面积为z,(1分)
依题意,得$\left\{\begin{array}{l}2(x+y)=36\\ z=2π×x×y.\end{array}\right.$(7分)
即$\left\{\begin{array}{l}x+y=18\\ z≤2π×{(\frac{x+y}{2})^2}=162π.\end{array}\right.$(11分)
当x=y,即长和宽均为9时,圆柱的侧面积最大,最大侧面积为162π.(13分)

点评 本题考查的知识点是旋转体,圆柱的侧面积,基本不等式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中的子集个数为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2014年12月28日开始,北京市地铁按照里程分段计价.具体如下表:
乘坐地铁方案
(不含机场线)
6公里(含)内3元;
6公里至12公里(含)内4元;
12公里至22公里(含)内5元;
22公里至32公里(含)内6元;
32公里以上部分,每增加l元可乘坐20公里(含).
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价大于3元的概率为$\frac{1}{2}$;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列有关线性回归分析的四个命题中
①线性回归直线未必过样本数据的中心点$(\overline x,\overline y)$;
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数r>0时,则两个变量正相关;
④如果两个变量的相关性越强,则相关性系数r就越接近于1.
其中真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若关于x的不等式(a2-a)•4x-2x-1<0在区间(-∞,1]上恒成立,则实数a的取值范围为(  )
A.(-2,$\frac{1}{4}$)B.(-∞,$\frac{1}{4}$)C.(-$\frac{1}{2}$,$\frac{3}{2}$)D.(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若sin3A=sin3B,则A、B的关系是(  )
A.A=BB.A+B=$\frac{π}{3}$
C.A=B或A+B=$\frac{π}{3}$D.A+B=$\frac{π}{3}$或|A-B|=$\frac{2π}{3}$或A=B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x))=x,则称x为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f(f(x))=x}
(1)证明:A⊆B;
(2)设f(x)=x2+ax+b,若A={-1,3},求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)0.50.5+0.1-2-3π0
(2)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log89•log278.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}中,a1=t(t≠0且t≠1),a2=t2,且当x=t时,函数f(x)=$\frac{1}{2}$(an-an-1)x2-(an+1-an)x(n≥2,n∈N*)取得极值.
(1)求证:数列{an+1-an}是等比数列;
(2)求数列{an]的通项公式;
(3)当t=-$\sqrt{\frac{7}{10}}$时,若bn=anln|an|,数列{bn}中是否存在最大项?如果存在,说明是第几项,如果不存在,说明理由.

查看答案和解析>>

同步练习册答案