精英家教网 > 高中数学 > 题目详情
16.函数y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的图象大致为(  )
A.B.C.D.

分析 根据函数的奇偶性和函数的最值即可求出答案.

解答 解:因为函数y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],
所以函数为偶函数,故排除A,D
y=-2cos2x+cosx+1=-2(cosx-$\frac{1}{4}$)2+$\frac{9}{8}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],
因为cosx≤1,
所以当cosx=$\frac{1}{4}$时,ymax=$\frac{9}{8}$,当cosx=1时,ymin=0,
故排除C,
故选:B

点评 本题考查了函数图象的识别,关键掌握函数的单调性和函数的最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知t>0,设函数f(x)=x3-$\frac{3(t+1)}{2}$x2+3tx+1.φ(x)=xex-m+2
(1)当m=2时,求φ(x)的极值点;
(2)讨论f(x)在区间(0,2)上的单调性;
(3)f(x)≤ϕ(x)对任意x∈[0,+∞)恒成立时,m的最大值为1,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=ax+x2-xlna-b(a>1,b∈R),e是自然对数的底数.若存在x1,x2∈[-1,1],使得|f(x1)-f(x2|≥e-1,则实数a的取值范围是[e,+∞).(参考公式:(ax)′=axlna)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=({sin\frac{ω}{2}x,sinωx}),\overrightarrow b=({sin\frac{ω}{2}x,\frac{1}{2}})$,其中ω>0,若函数$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$在区间(π,2π)内没有零点,则ω的取值范围是(  )
A.$({0,\frac{1}{8}}]$B.$({0,\frac{5}{8}}]$C.$({0,\frac{1}{8}}]∪[{\frac{5}{8},1}]$D.$({0,\frac{1}{8}}]∪[{\frac{1}{4},\frac{5}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={x|1<x≤3},若N={x|2<x≤5},则M∪N=(  )
A.{x|1<x≤5}B.{x|2<x≤3}C.{x|1≤x<2或3≤x≤5}}D.{x|1≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在△ABC中,角A,B,C所对的边为a,b,c,满足sin2A+sin2C-sin2B=$\sqrt{3}$sinA•sinC
(Ⅰ)求角B;
(Ⅱ)点D在线段BC上,满足DA=DC,且a=11,cos(A-C)=$\frac{\sqrt{5}}{5}$,求线段DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行右边的程序框图,若输入?=0.01,则输出的e精确到?的近似值为(  )
A.2.69B.2.70C.2.71D.2.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等比数列{an}中,若a1=2,a4=16,则{an}的前5项和S5等于(  )
A.30B.31C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由曲线y=xa(a为常数,且a>0),直线y=0和x=1围成的平面图形的面积记为${∫}_{0}^{1}$xadx,已知${{∫}_{0}^{1}x}^{\frac{1}{2}}$dx=$\frac{2}{3}$,${∫}_{0}^{1}xdx$=$\frac{1}{2}$,${∫}_{0}^{1}$${x}^{\frac{3}{2}}$dx=$\frac{2}{5}$,${∫}_{0}^{1}$x2dx=$\frac{1}{3}$,${∫}_{0}^{1}$${x}^{\frac{5}{2}}$dx=$\frac{2}{7}$,${∫}_{0}^{1}$x3dx=$\frac{1}{4}$,…,照此规律,当a∈(0,+∞)时,${∫}_{0}^{1}$xndx=$\frac{2}{2a+2}$.

查看答案和解析>>

同步练习册答案