精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
ax
,g(x)=f(x)+ax-6lnx,其中a∈R
(1)当a=1时,判断f(x)的单调性;
(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(3)设函数h(x)=x2-mx+4,当a=2时,若?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.
分析:(1)当a=1时,f(x)=lnx-
1
x
,f′(x)=
1
x
+
1
x2
=
x+1
x2
,由此能推导出f(x)在(0,+∞)上是增函数.
(2)将函数为增函数,转化为导函数大于等于0恒成立,分离出参数a,求出a的范围.
(3)对h(x)进行配方,讨论其最值问题,根据题意?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,只要要求g(x)max≥h(x)max,即可,从而求出m的范围.
解答:解:(1)当a=1时,f(x)=lnx-
1
x

∴f′(x)=
1
x
+
1
x2
=
x+1
x2
,x>0.
∵x>0,∴f′(x)>0,
∴f(x)在(0,+∞)上是增函数.
(2)∵f(x)=lnx-
a
x
,g(x)=f(x)+ax-6lnx,a>0.
∴g(x)=ax-
a
x
-5lnx,x>0
∴g′(x)=a+
1
x2
-
5
x
=
ax2-5x+a
x2

若g′(x)>0,可得ax2-5x+a>0,在x>0上成立,
∴a>
5x
x2+1
=
5
x+
1
x

5
x+
1
x
5
2
1
=
5
2
(x=1时等号成立),
∴a>
5
2

(3)当a=2时,g(x)=2x-
2
x
-5lnx,
h(x)=x2-mx+4=(x-
m
2
2+4-
m2
4

?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,
∴要求g(x)的最大值,大于h(x)的最大值即可,
g′(x)=
2x2-5x+2
x2
=
(2x-1)(x-2)
x2
,令g′(x)=0,
解得x1=
1
2
,x2=2,
当0<x<
1
2
,或x>2时,g′(x)>0,g(x)为增函数;
1
2
<x<2时,g′(x)<0,g(x)为减函数;
∵x1∈(0,1),
∴g(x)在x=
1
2
处取得极大值,也是最大值,
∴g(x)max=g(
1
2
)=1-4+5ln2=5ln2-3,
∵h(x)=x2-mx+4=(x-
m
2
2+4-
m2
4

若m≤3,hmax(x)=h(2)=4-2m+4=8-2m,
∴5ln2-3≥8-2m,∴m≥
11-5ln2
2

11-5ln2
2
>3,故m不存在;
若m>3时,hmax(x)=h(1)=5-m,
∴5ln2-3≥5-m,∴m≥8-5ln2,
实数m的取值范围:m≥8-5ln2;
点评:本题考查函数单调性与导数的关系,和分类讨论思想,及二次函数的知识,是导数中常见的恒成立问题,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案