精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C所对的边分别为Aa,b,c,且满足$\frac{c}{sinC}$=$\frac{a}{\sqrt{3}cosA}$
(1)若4sinC=c2sinB,求△ABC的面积;
(2)若$\overrightarrow{AB}$$•\overrightarrow{BC}$+$\overrightarrow{A{B}^{2}}$=4,求a的最小值.

分析 (1)运用正弦定理和同角的商数关系,即可得到角A,再由三角形的面积公式,计算即可得到;
(2)运用向量的数量积的定义和向量的平方即为模的平方,由余弦定理和基本不等式,即可得到最小值.

解答 解:(1)由正弦定理,可得
$\frac{sinC}{sinC}$=$\frac{sinA}{\sqrt{3}cosA}$=1,
即有tanA=$\sqrt{3}$,
由0<A<π,可得A=$\frac{π}{3}$,
由正弦定理可得4c=bc2,即有bc=4,
△ABC的面积为S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$;
(2)$\overrightarrow{AB}$$•\overrightarrow{BC}$+$\overrightarrow{A{B}^{2}}$=4,
可得c2-accosB=4,
由余弦定理,可得2c2-(a2+c2-b2)=8,
即b2+c2-a2=8,
又a2=b2+c2-2bccosA=b2+c2-bc,
即有bc=8,
由a2=b2+c2-bc≥2bc-bc=bc=8,
当且仅当b=c时,a取得最小值,且为2$\sqrt{2}$.

点评 本题考查正弦定理和余弦定理及面积公式的运用,考查向量的数量积的定义和性质,以及基本不等式的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.计算:
(1)$\frac{lg\sqrt{27}+lg8-3lg\sqrt{10}}{lg1.2}$;
(2)lg22+lg2•lg5+lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$,则f(x)的最小正周期为2π,最大值为1,最小值为-$\frac{\sqrt{2}}{2}$,单调减区间为(2kπ+$\frac{π}{2}$,2kπ+$\frac{5π}{4}$),(2kπ+2π,2kπ+$\frac{9π}{4}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若(-2)${\;}^{\frac{2}{3}}$>(2a+4)${\;}^{\frac{2}{3}}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=ln(2x+5)的导函数f′(x)=(  )
A.$\frac{1}{2x+5}$B.$\frac{2}{2x+5}$C.$\frac{5}{2x+5}$D.$\frac{ln2}{2x+5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=alnx+$\frac{1}{x}$(a≠0).求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若一个命题的结论是“直线l在平面α内”,则用反证法证明这个命题时,第一步应作的假设为(  )
A.假设直线l∥平面αB.假设直线l∩平面α于点A
C.假设直线l?平面αD.假设直线l⊥平面α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求出函数y=sinxcosx+$\sqrt{3}$cos2x的最小正周期及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.公司随机抽取M名员工作为样本,得到这M名员工参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中M和图中a的值;
(Ⅱ)若该公司员工有240人,试估计员工参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的员工中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)20.05
合计M1

查看答案和解析>>

同步练习册答案