【题目】在平面直角坐标系中,
为坐标原点.定义点
的“友好点”为:
,现有下列命题:
①若点
的“友好点”是点
,则点
的“友好点”一定是点
.
②单位圆上的点的“友好点”一定在单位圆上.
③若点
的“友好点”还是点
,则点
一定在单位圆上.
④对任意点
,它的“友好点”是点
,则
的取值集合是
.
其中的真命题是_____.
科目:高中数学 来源: 题型:
【题目】椭圆
(a>0,b>0)的左右焦点分别为F1,F2,与y轴正半轴交于点B,若△BF1F2为等腰直角三角形,且直线BF1被圆x2+y2=b2所截得的弦长为2,
(1)求椭圆的方程;
(2)直线l:y=kx+m与椭圆交于点A,C,线段AC的中点为M,射线MO与椭圆交于点P,点O为△PAC的重心,求证:△PAC的面积S为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)设点
,
为曲线
上的动点,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.
![]()
(1)求证:面BCE⊥面DCE;
(2)求二面角C﹣BE﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
平面
,
是正三角形,
与
的交点
恰好是
中点,又
,
.
![]()
(1)求证:
;
(2)设
为
的中点,点
在线段
上,若直线
平面
,求
的长;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线
上任意一点
向
轴作垂线段垂足为
,点
是线段
上的一点,且满足
.
(1)求点
的轨迹
的方程;
(2)设直线
与轨迹
交于
两点,点
为轨迹
上异于
的任意一点,直线
分别与直线
交于
两点.问:
轴正半轴上是否存在定点使得以
为直径的圆过该定点?若存在,求出符合条件的定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个五位自然数
数称为“跳跃数”,如果同时有
或
(例如13284,40329都是“跳跃数”,而12345,54371,94333都不是“跳跃数”),则由1,2,3,4,5组成没有重复数字且1,4不相邻的“跳跃数”共有_____个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的导函数为
,且对任意的实数
都有
(
是自然对数的底数),且
,若关于
的不等式
的解集中恰有唯一一个整数,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com