精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
9
x-3
(x>3)

(I)求函数f(x)的最小值;
(II)若不等式f(x)≥
t
t+1
+7
恒成立,求实数t的取值范围.
分析:(Ⅰ)将f(x)=x+
9
x-3
(x>3)转化为f(x)=x-3+
9
x-3
+3(x>3),应用基本不等式即可求得函数f(x)的最小值;
(Ⅱ)由(Ⅰ)可求得f(x)min=9,不等式f(x)≥
t
t+1
+7
恒成立,转化为9≥
t
t+1
+7恒成立,从而求得实数t的取值范围.
解答:解:(I)∵x>3,
∴x-3>0.
f(x)=x+
9
x-3
=x-3+
9
x-3
+3
≥2
(x-3)•
9
x-3
+3=9
.…(3分)
当且仅当x-3=
9
x-3

即(x-3)2=9时上式取得等号,
又∵x>3,
∴x=6,…(5分)
∴当x=6时,函数f(x)的最小值是9.…(6分)
(II)由(I)知,当x>3时,f(x)的最小值是9,
要使不等式f(x)≥
t
t+1
+7
恒成立,只需9≥
t
t+1
+7
…(9分)
t
t+1
-2≤0
-t-2
t+1
≤0

解得t≤-2或t>-1
∴实数t的取值范围是(-∞,-2]∪(-1,+∞).…(12分)
点评:本题考查基本不等式,关键在于将所给的条件转化为能用基本不等式的式子,难点在于(Ⅱ)中不等式f(x)≥
t
t+1
+7
恒成立,转化为9≥
t
t+1
+7恒成立,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案