分析 (1)求出圆C:(x+$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=r2,从而圆心C(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),由此能求出圆心的极坐标.
(2)直线l的直角坐标方程为x+y=1.由此利用圆C上的点到直线l的最大距离为2$\sqrt{2}$,能求出r的值.
解答 解:(1)∵在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}+rcosθ}\\{y=\frac{\sqrt{2}}{2}+rsinθ}\end{array}$(θ为参数,r>0),
∴(x+$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=r2,
∴圆心C(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
∴${ρ}^{2}=\frac{1}{2}+\frac{1}{2}=1$,tanθ=$\frac{y}{x}=\frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}}$=-1,$θ=\frac{3π}{4}$,
∴圆心的极坐标为(1,$\frac{3π}{4}$).
(2)∵直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∴$ρ(sinθcos\frac{π}{4}+cosθsin\frac{π}{4})$=$\frac{\sqrt{2}}{2}$,
∴ρsinθ+ρcosθ=1,∴x+y=1.
∵圆C上的点到直线l的最大距离为2$\sqrt{2}$,
∴r+$\frac{|-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-1|}{\sqrt{2}}$=2$\sqrt{2}$,解得r=$\frac{3\sqrt{2}}{2}$.
点评 本题考查圆心的极坐标的求法,考查圆的半径的求法,是中档题,解题时要认真审题,注意参数方程、直角坐标方程、极坐标方程的互化和点到直线的距离公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{7}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com