精英家教网 > 高中数学 > 题目详情
14.复数${(1+i)^2}-\frac{1-i}{1+i}$(i为虚数单位)的值为(  )
A.3iB.2iC.iD.4

分析 直接由复数代数形式的乘除运算化简得答案.

解答 解:${(1+i)^2}-\frac{1-i}{1+i}$=$2i-\frac{(1-i)^{2}}{(1+i)(1-i)}=2i+i=3i$,
故选:A.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.命题?x∈R,x2-2x+4≤0的否定为?x∈R,x2-2x+4>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}+rcosθ}\\{y=\frac{\sqrt{2}}{2}+rsinθ}\end{array}$(θ为参数,r>0),以O为极点,x轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求圆心的极坐标;
(2)若圆C上的点到直线l的最大距离为2$\sqrt{2}$,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从抛物线y2=2px(p>0)的上一点P引其准线的垂线,垂足为M,设抛物线的焦点为F,若|PF|=4,M到直线PF的距离为4,则此抛物线的方程为(  )
A.y2=2xB.y2=4xC.y2=6xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{xn}满足${x}_{1}=\frac{1}{2}$,且${x}_{n+1}=\frac{{x}_{n}}{2-{x}_{n}}(n∈{N}^{+})$
(1)用数学归纳法证明:0<xn<1;
(2)设${a}_{n}=\frac{1}{{x}_{n}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正数数列{an}的前n项和Sn=$\frac{1}{2}$(an+$\frac{1}{an}$),
(1)求a1,a2,a3
(2)归纳猜想an的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.长方体ABCD-A1B1C1D1中,对角线A1C与棱CB、CD、CC1所成角分别为α、β、γ,则sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设点E,F分别是棱长为2的正方体ABCD-A1B1C1D1的棱BC,BB1的中点.如图,以D为坐标原点,$\overrightarrow{DA}$,$\overrightarrow{DC}$,$\overrightarrow{D{D_1}}$为x轴、y轴、z轴正方向,建立空间直角坐标系.
(I)求$\overrightarrow{{A_1}E}•\overrightarrow{{D_1}F}$;
(II)若点M,N分别是线段A1E与线段D1F上的点,问是否存在直线MN,使得MN⊥平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=${log_{\frac{1}{2}}}$x-(${\frac{1}{2}$)x的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案