精英家教网 > 高中数学 > 题目详情
9.已知数列{xn}满足${x}_{1}=\frac{1}{2}$,且${x}_{n+1}=\frac{{x}_{n}}{2-{x}_{n}}(n∈{N}^{+})$
(1)用数学归纳法证明:0<xn<1;
(2)设${a}_{n}=\frac{1}{{x}_{n}}$,求数列{an}的通项公式.

分析 (1)根据数学归纳法的证明步骤进行证明;
(2)设an=$\frac{1}{{x}_{n}}$,可得{an-1}是以1为首项,以2为公比的等比数列,即可求数列{an}的通项公式.

解答 证明(1):①当n=1时,x1=$\frac{1}{2}$∈(0,1),
②假设当n=k时,结论成立,即xk∈(0,1),
则当n=k+1时,xk+1=f(xk)=$\frac{{x}_{k}}{2-{x}_{k}}$
∵xk∈(0,1),
∴=$\frac{{x}_{k}}{2-{x}_{k}}$
∈(0,1),
即n=k+1时结论成立
综上①②可知0<xn<1;
(2):由xn+1=$\frac{{x}_{n}}{2-{x}_{n}}$可得:$\frac{1}{{x}_{n+1}}$=$\frac{2}{{x}_{n}}$-1
∵an=$\frac{1}{{x}_{n}}$,
∴an+1=2an-1,
∴an+1-1=2(an-1),
又a1-1=1
∴{an-1}是以1为首项,以2为公比的等比数列,
∴an-1=2n-1
即an=2n-1+1.

点评 本题考查根据递推关系求数列的通项公式的方法,考查数学归纳法,证明n=k+1时,是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=2ax2-x-1在区间(0,1)内恰有一个零点,则实数a的取值范围是(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,两个顶点分别为A(-a,0),B(a,0),点M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线AD,BC的斜率分别为k1,k2,求证:$\frac{{k}_{1}}{{k}_{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知两个单位向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,则|$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$|=(  )
A.$\frac{1}{2}$B.2$\sqrt{3}$C.$\sqrt{7}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,过点F1的直线与双曲线交于P,Q两点,且|QF1|-|PF1|=2a,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则此双曲线的离心率为(  )
A.3B.$\sqrt{5}$C.$\frac{5}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数${(1+i)^2}-\frac{1-i}{1+i}$(i为虚数单位)的值为(  )
A.3iB.2iC.iD.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.空间不共面四点到某平面的距离相等,则这样的平面共有(  )
A.1个B.4个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示程序框图,输出的k值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的周期为π,其图象向右平移$\frac{2π}{3}$个单位后得到函数g(x)=cosωx的图象,则φ等于(  )
A.$-\frac{π}{6}$B.$\frac{π}{6}$C.$-\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案