精英家教网 > 高中数学 > 题目详情
1.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若a+b=2,当边c取最小值时,求△ABC的面积.

分析 (Ⅰ)由正弦定理得:2sinCcosA+sinA=2sinB,从而sinA=2sinAcosC,进而cosC=$\frac{1}{2}$,由此能求出C.
(Ⅱ)由余弦定理得:c2=a2+b2-2abcosC=a2+b2-ab,由a+b=2,得${c}^{2}=4-3ab≥4-3(\frac{a+b}{2})^{2}$=1,由此能示求出当c的最小值为1及S△ABC

解答 解:(Ⅰ)∵在△ABC中,内角A,B,C的对边分别为a,b,c,2ccosA+a=2b.
∴由正弦定理得:2sinCcosA+sinA=2sinB,
∴2sinCcosA+sinA=2sin(A+C),即2sinCcosA+sinA=2sinAcosC+2cosAsinC,
∴sinA=2sinAcosC,∵sinA≠0,∴cosC=$\frac{1}{2}$.
∵C是三角形的内角,∴C=$\frac{π}{3}$.
(Ⅱ)由余弦定理得:c2=a2+b2-2abcosC=a2+b2-ab,
∵a+b=2,∴c2=a2+b2-ab=(a+b)2-3ab=4-3ab,
∴${c}^{2}=4-3ab≥4-3(\frac{a+b}{2})^{2}$=1(当且仅当a=b=1时,等号成立),
∴当c的最小值为1,故S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$.

点评 本题考查角的大小、三角形面积的求法,考查正弦定理、余弦定理、三角形面积公式、诱导公式、正弦加法定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C所对的边分别是a,b,c,若sinA=sinC,b2-a2=ac,则∠A=(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|(x+1)(x-3)≤0},集合B={y|y=2x,x∈R},则A∩B=(  )
A.(0,3]B.[-1,3]C.(0,3)D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1的值域[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的对边分别为a,b,c,且$2{cos^2}\frac{C}{2}+cos2({A+B})-1=0$
(1)求C;
(2)若c=2,ab=4,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了降低能源损耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c(单位:万元)与隔热层厚度x(单位:cm)满足关系c(x)=$\frac{k}{2x+5}$(0≤x≤10),若不建隔热层,每年能源消耗为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和
(Ⅰ)求k的值及f(x)的表达式
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4;5:5:6,则应从一年级本科生中抽取(  )名学生.
A.60B.75C.90D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数f(x)的导函数f′(x),且满足f(x)+f′(x)<-2,f(1)=2,则不等式exf(x)>4e-2ex(其中e为自然对数的底数)的解集为(  )
A.(-∞,1)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设双曲线的实轴长为2a(a>0),一个焦点为F,虚轴的一个端点为B,如果直线FB恰好与圆x2+y2=a2相切,那么双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

同步练习册答案