精英家教网 > 高中数学 > 题目详情

已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为。求抛物线的方程.

 

【答案】

依题意可设抛物线方程为:(a可正可负),与直线y=2x+1截得的弦为AB;

则可设A(x1,y1)、B(x2,y2)联立    得

即:   

得:a=12或-4   所以抛物线方程为

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知顶点为原点O,焦点在x轴上的抛物线,其内接△ABC的重心是焦点F,若直线BC的方程为4x+y-20=0.
(1)求抛物线方程;
(2)轴上是否存在定点M,使过M的动直线与抛物线交于P,Q两点,满足∠POQ=90°?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,点M是椭圆上异于A1、A2的任意一点,设直线MA1、MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值;
(Ⅲ)设椭圆方程
x2
a2
+
y2
b2
=1
,A1、A2为长轴两个端点,M为椭圆上异于A1、A2的点,kMA1kMA2分别为直线MA1、MA2的斜率,利用上面(Ⅱ)的结论得kMA1kMA2=
 
(只需直接填入结果即可,不必写出推理过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(I)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1,A2,点M是椭圆上异于Al,A2的任意一点,设直线MA1,MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,点M是椭圆上异于A1、A2的任意一点,设直线MA1、MA2的斜率分别为KMA1、KMA2,证明KMA1•KMA2为定值;
(Ⅲ)设椭圆方程
x2
a2
+
y2
b2
=1
,A1、A2为长轴两个端点,M为椭圆上异于A1、A2的点,KMA1、KMA2分别为直线MA1、MA2的斜率,利用上面(Ⅱ)的结论得KMA1•KMA2=
-
b
a
-
b
a
(只需直接填入结果即可,不必写出推理过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线顶点在原点,焦点在y轴上,抛物线上一点A到焦点F的距离为5,点A纵坐标为-3,求点A的横坐标及抛物线方程.

查看答案和解析>>

同步练习册答案