科目:高中数学 来源: 题型:
已知椭圆
的离心率为
, 以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,过点
作与
轴不重合的直线
交椭圆于
、
两点,连结
、
分别交直线
于
、
两点.试问直线
、
的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
在直角坐标系内,点
实施变换
后,对应点为
,给出以下命题:
①圆
上任意一点实施变换
后,对应点的轨迹仍是圆
;
②若直线
上每一点实施变换
后,对应点的轨迹方程仍是
则
;
③椭圆
上每一点实施变换
后,对应点的轨迹仍是离心率不变的椭圆;
④曲线
:
上每一点实施变换
后,对应点的轨迹是曲线
,
是曲线
上的任意一点,
是曲线
上的任意一点,则
的最小值为
.
以上正确命题的序号是___ ___(写出全部正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
曲线C1的参数方程为
(θ为参数),曲线C2的极坐标方程为ρ=2cos θ-2sin θ.
(1)化曲线C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com