精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R. (Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)ex . 求函数g(x)的极值.

【答案】解:(Ⅰ)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3 令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣ ,因此f(x)=x3 x2﹣3x+1
∴f(1)=﹣
又∵f'(1)=2×(﹣ )=﹣3,
故曲线在点(1,f(1))处的切线方程为y﹣(﹣ )=﹣3(x﹣1),即6x+2y﹣1=0.
(Ⅱ)由(I)知g(x)=(3x2﹣3x﹣3)ex
从而有g'(x)=(﹣3x2+9x)ex
令g'(x)=0,则x=0或x=3
∵当x∈(﹣∞,0)时,g'(x)<0,
当x∈(0,3)时,g'(x)>0,
当x∈(3,+∞)时,g'(x)<0,
∴g(x)=(3x2﹣3x﹣3)ex在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e3
【解析】(Ⅰ)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)根据g(x)=f′(x)e1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知α,β均为锐角,sinα= ,cos(α+β)= ,求(Ⅰ)sinβ,(Ⅱ)tan(2α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC中,sin = ,AB=2,点D在线段AC上,且AD=2DC,BD= .(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则关于函数y=f(x),下列说法正确的是(
A.在x=﹣1处取得极大值
B.在区间[﹣1,4]上是增函数
C.在x=1处取得极大值
D.在区间[1,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数满足,且当时, ,若在内关于的方程恰有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上不单调,求的取值范围.

(2)令,是否存在实数,对任意,存在,使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(元)有以下统计资料:

参考数据: .参考公式:

如果由资料知yx呈线性相关关系.试求:

1 2)线性回归方程

3)估计使用10年时,维修费用是多少?

查看答案和解析>>

同步练习册答案