精英家教网 > 高中数学 > 题目详情
2.已知等比数列{an}的前3项的和是-$\frac{3}{5}$,前6项的和是$\frac{21}{5}$,求它的前10项的和.

分析 设等比数列{an}的公比为q,由题意可得a1+a2+a3=$-\frac{3}{5}$,a1+a2+a3+a4+a5+a6=$\frac{21}{5}$,两式联立解得a1和q由求和公式可得.

解答 解:设等比数列{an}的公比为q,
由题意可得a1+a2+a3=$-\frac{3}{5}$,a1+a2+a3+a4+a5+a6=$\frac{21}{5}$,
两式相减可得a4+a5+a6=$\frac{21}{5}$-($-\frac{3}{5}$)=$\frac{24}{5}$,
∴q3=$\frac{{a}_{4}+{a}_{5}+{a}_{6}}{{a}_{1}+{a}_{2}+{a}_{3}}$=-8,解得q=-2,
代入a1+a2+a3=$-\frac{3}{5}$可得a1(1-2+4)=$-\frac{3}{5}$,解得a1=$-\frac{1}{5}$,
∴前10项的和S10=$\frac{-\frac{1}{5}[1-(-2)^{10}]}{1-(-2)}$=$\frac{3069}{5}$

点评 本题考查等比数列的求和公式,求出数列的首项和公比是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知(1+x)n的展开式中,第五、六、七项的系数成等差数列,求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若圆x2+y2-4kx-2y+4k2=0的一条直径所在直线方程为x-2y-2=0,则实数k的值为(  )
A.2B.4C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}与\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OC}$与$\overrightarrow{OA}$的夹角为30°,|$\overrightarrow{OC}$|=2$\sqrt{3}$,用$\overrightarrow{OA}、\overrightarrow{OB}$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求值域.
(1)y=$\sqrt{5+4x-{x}^{2}}$
(2)y=2x+$\sqrt{x}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.集合A={x|x2-x-2=0},B={x|ax2+2ax+1=0},若A∩B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$(an+2-a n+1)x2-(3an+1-4an)x(n∈N)的对称轴是x=1,数列 {an}满足,a1=2,a2=8.
(1)证明数列{an+1-2an}是等比数列,并求数列{an}的通项;
(2)设3nbn=(-1)nan,且|b1|+|b2|+…+|bn|<m-3n($\frac{2}{3}$)n+1对于n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.表示两直线x-2y+3=0与3x+2y+1=0交点的集合,正确的是 (  )
A.{-1,1}B.{(-1,1)}C.{(1,-1)}D.{1,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数y=f(x)满足af(x)+bf($\frac{1}{x}$)=cx,x≠0,其中a、b、c都是非零常数,a≠±b,求函数y=f(x)的解析式.

查看答案和解析>>

同步练习册答案