精英家教网 > 高中数学 > 题目详情
11.表示两直线x-2y+3=0与3x+2y+1=0交点的集合,正确的是 (  )
A.{-1,1}B.{(-1,1)}C.{(1,-1)}D.{1,-1}

分析 解不等式组,求出交点的坐标即可求出答案.

解答 解:由$\left\{\begin{array}{l}{x-2y+3=0}\\{3x+2y+1=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
故选:B.

点评 本题考查了集合的运算,考查解方程组问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.下列各组函数是相等函数的有1组.
(1)f(x)=x,g(x)=(x+1)2
(2)f(x)=5x-1,g(t)=5t-1;
(3)f(x)=x2+1,g(x)=x2+1,x∈[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的前3项的和是-$\frac{3}{5}$,前6项的和是$\frac{21}{5}$,求它的前10项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:
(1)$\frac{{a}^{-1}+{b}^{-1}}{{a}^{-1}•{b}^{-1}}$(ab≠0);
(2)$\frac{{a}^{\frac{1}{3}}(a-8b)}{4{b}^{\frac{2}{3}}+2{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$÷(1-$\frac{2{b}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}}$)•a${\;}^{\frac{1}{3}}$(ab≠0,且a≠8b).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过点A(-1,n),B(n,6)的直线与直线x-2y+1=0平行,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m一6,根据下列条件分别求m的值.
(1)经过定点p(2,-1);
(2)在y轴上的截距为6;
(3)与y轴平行;
(4)与X轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若ab=1,则a+b的取值范围是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知△ABC的顶点为A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB边上的中线CM所在直线的方程;
(Ⅱ)AB边上的高线CH所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x+ln($\sqrt{{x}^{2}+1}$-x)-5(x∈[-2014,2014])的最大值为M,最小值为m,则M+m=(  )
A.-5B.-10C.5D.10

查看答案和解析>>

同步练习册答案