| A. | 9 | B. | -9 | C. | 0 | D. | 1 |
分析 根据函数奇偶性和周期性进行转化求解即可.
解答 解:∵f(x)+f(4-x)=0,即f(x+4)=f(x),
∴函数f(x)是周期为4的周期函数,
则f(2015)=f(503×4+3)=f(3),
f(2016)=f(504×4)=f(0),
f(2017=)=f(504×4+1)=f(1),
∵f(x)是奇函数,
∴f(0)=0,
当x=-1时,f(-1+4)=f(-1)=-f(1)=f(3),
即f(1)+f(3)=0
即f(2016)+f(2017)+f(2018)=f(0)+f(1)+f(3)=0,
故选:C.
点评 本题主要考查函数值的计算,根据函数奇偶性和周期性的性质结合条件关系进行转化是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生编号 | 1 | 2 | 3 | 4 | 5 |
| 数学分数x | 89 | 91 | 93 | 95 | 97 |
| 物理分数y | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com