精英家教网 > 高中数学 > 题目详情

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量,获得本场比赛胜利,最终人机大战总比分定格在.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)根据已知条件完成如图列联表,并据此资料判断你是否有的把握认为“围棋迷”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望和方差

附:,其中

0.05

0.010

3.74

6.63

【答案】见解析.

【解析】

试题分析:(1)根据频率分布直方图补充列联表,再将列联表中的数据代入公式计算即可;

2)依题意得到,可以写出的分布列,再进行计算即可。

试题解析:

1)由频率分布直方图可知,在抽取的100人中,围棋迷25人,

从而列联表如下:

非围棋迷

围棋迷

合计

30

15

45

45

10

55

合计

75

25

100

列联表中的数据代入公式计算,得

因为,所以没有理由认为围棋迷与性别有关.

2)由频率分布直方图知抽到围棋迷的频率为,将频率视为概率,即从观众中抽取一名围棋迷的概率为.由题意,从而的分布列为

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,曲线C:(x-1)2y2=1.直线l经过点P(m,0),且倾斜角为,以O为极点,x轴正半轴为极轴,建立极坐标系.

(1)写出曲线C的极坐标方程与直线l的参数方程;

(2)若直线l与曲线C相交于AB两点,且|PA|·|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列各式的值:

(1)

(2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,为自然对数的底数.

1)讨论的单调性;

2)当时,证明:

3)当时,判断函数零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论函数的单调区间.

)当时,设的两个极值点,恰为的零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

(1)求abcd的值;

(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日 期

121

122

123

124

125

温差°C

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1)求选取的2组数据恰好是不相邻2天数据的概率;

2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

购买意愿强

购买意愿弱

合计

20~40岁

大于40岁

合计

(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x).

查看答案和解析>>

同步练习册答案