精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系xOy中,曲线C:(x-1)2y2=1.直线l经过点P(m,0),且倾斜角为,以O为极点,x轴正半轴为极轴,建立极坐标系.

(1)写出曲线C的极坐标方程与直线l的参数方程;

(2)若直线l与曲线C相交于AB两点,且|PA|·|PB|=1,求实数m的值.

【答案】(1) ρ=2cos θ;(2) m=1或m=1+m=1-.

【解析】试题分析:(1)根据直角坐标与极坐标的互化公式写出曲线C的极坐标方程,根据直线所过的定点和斜率写出直线的参数方程;(2)将直线的参数方程代入圆的方程,根据t的几何意义将韦达定理代入|PA|·|PB|=1,求出m.

试题解析:(1)曲线C的直角坐标方程为:(x-1)2y2=1,即x2y2=2x,即ρ2=2ρcos θ

所以曲线C的极坐标方程为:ρ=2cos θ.

直线l的参数方程为 (t为参数).

(2)设AB两点对应的参数分别为t1t2,将直线l的参数方程代入x2y2=2x中,

t2+(m)tm2-2m=0,所以t1t2m2-2m

由题意得|m2-2m|=1,解得m=1或m=1+m=1-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在直角坐标系中,曲线的参数方程为为参数),现以原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线的普通方程和直线的直角坐标方程;

2)在曲线上是否存在一点,使点到直线的距离最小?若存在,求出距离的最小值及点的直角坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数 .

(1)讨论函数的单调性;

(2)若,且对任意的,总存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,函数的图象有三个不同的交点,求实数的范围;

(2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数,).

(1)若仅有一个极值点,求的取值范围;

(2)证明:当时,有两个零点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F,右顶点为A,设离心率为e,且满足,其中O为坐标原点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点的直线l与椭圆交于MN两点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数ya2x+2ax-1(a>0且a≠1),当自变量x∈[-1,1]时,函数的最大值为14.试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量,获得本场比赛胜利,最终人机大战总比分定格在.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)根据已知条件完成如图列联表,并据此资料判断你是否有的把握认为“围棋迷”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望和方差

附:,其中

0.05

0.010

3.74

6.63

查看答案和解析>>

同步练习册答案