精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,函数的图象有三个不同的交点,求实数的范围;

(2)讨论的单调性.

【答案】(1);(2)时,函数在上单调递减,当时,函数在上递减,在上递增,在上递减,当时,函数在上单调递减,在上单调递增,在上单调递减.

【解析】

试题分析:本题考查利用导数研究函数的单调性、函数的极值与零点个数以及分类讨论思想的应用;(1)作差,分离参数构造函数,通过导数研究函数的极值,再通过函数的图象进行求解(2)求导,确定导函数的两个零点,讨论两零点的大小进行求解.

试题解析:(1)当时,

,令

故当时,;当时,;当时,,故.

(2)因为,所以.

时,恒成立,故函数上单调递减;

时,时,时,,当时,

故函数上递减,在上递增,在上递减;当时,时,时,,当时,

故函数上单调递减,在上单调递增,在上单调递减.

综上,当时,函数在上单调递减,当时,函数在上递减,在上递增,在上递减;当时,函数在上单调递减,在上单调递增,在上单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:

2

4

5

6

8

30

40

60

50

70

(1)求回归直线方程;

(2)据此估计广告费用为12万元时的销售额约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中, 的中点,连接,过点于点,连接,已知.

(1)求证:

(2)若,求的长度;

(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市决定在其经济开发区一块区域进行商业地产开发,截止2015年底共投资百万元用于餐饮业和服装业,2016年初正式营业,经过专业经济师预算,从2016年初至2019年底的四年间,在餐饮业利润为该业务投资额的,在服装业可获利该业务投资额的算术平方根.

(1)该市投资资金应如何分配,才能使这四年总的预期利润最大?

(2)假设自2017年起,该市决定对所投资的区域设施进行维护保养,同时发放员工奖金,方案如下:2017年维护保养费用百万元,以后每年比上一年增加百万元;2017年发放员工奖金共计百万元,以后每年的奖金比上一年增加.若该市投资成功的标准是:从2016年初到2019的底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于总投资额的,问该市投资是否成功?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调递减的奇函数,当时, .

(1)求的值;

(2)求的解析式;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,曲线C:(x-1)2y2=1.直线l经过点P(m,0),且倾斜角为,以O为极点,x轴正半轴为极轴,建立极坐标系.

(1)写出曲线C的极坐标方程与直线l的参数方程;

(2)若直线l与曲线C相交于AB两点,且|PA|·|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间20名工人年龄数据如下表:

年龄(岁)

19

24

26

30

34

35

40

合计

工人数(人)

1

3

3

5

4

3

1

20

(1)求这20名工人年龄的众数与平均数;

(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;

(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,为自然对数的底数.

1)讨论的单调性;

2)当时,证明:

3)当时,判断函数零点的个数,并说明理由.

查看答案和解析>>

同步练习册答案